

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering
Jain Global Campus, Kanakapura Taluk - 562112

Ramanagara District, Karnataka, India

2018-2022

A Minor Project Report on

“DEMOLITION HAMMER OPERATING TIME RECORDER”

Submitted by

PRAMODH P
18BTREC055

PRANAY KUMAR K
18BTREC056

RAHUL S
18BTREC059

SHATHISH B
18BTREC065

Under the guidance of

Dr. Mohamad Umair Bagali
 Assistant Professor

Department of Electronics and Communication Engineering
 Faculty of Engineering & Technology

JAIN DEEMED-TO-BE UNIVERSITY

ABSTRACT

Demolition is an essential part of any construction work. Such demolition services are
charged on an hourly basis and it is around ₹300 per hour. Usually, these services are
provided using an electromechanical tool called “Demolition Hammer”. The problem arises
when the demolition service provider, or workers working for such organizations delay the
demolition work by not planning their work efficiently. These workers demand charges to be
paid for the time in which they are idle. Also due to this reason the work is delayed without
any proper reason. This is not an ethical way of doing business. Hence, a timer that is capable
of recording the duration of work can induce a significant impact on the work done and
making a universal battery operated device will ensure it can be used independent of different
brands of demolition hammer.

The project “Demolition Hammer Operating Time Recorder”, aims to solve this problem.
The demolition hammer vibrates when it is in operation, this parameter can be taken as a
measure to determine whether the work is being done or not. Hence by monitoring the
duration the demolition hammer is vibrating, i.e., the work is being done, the services can be
charged according to the duration of work. This simple mechanism will force workers to
work efficiently and also take breaks only when required. On the other hand, the customer of
these service can pay for exact duration of work. Few additional features like ability to store
values of last few recordings, user friendly interface, will help the user and the customer.

iii

TABLE OF CONTENTS

List of Figures v

List of Tables vi

Nomenclature used vii

Chapter 1 01

1. INTRODUCTION 01

1.1 Literature Survey 01

1.2 Limitations of the Current Work 02

1.3 Problem Definition 02

1.4 Objectives 02

1.5 Methodology 03

1.6 Hardware and Software tools used 04

Chapter 2 05

2. BASIC THEORY 05

2.1 Microcontrollers 05

2.2 Micro Electrical Mechanical System 06

2.3 Time Processing 06

2.4 Liquid Crystal Display 07

Chapter 3 08

3. TOOL DESCRIPTION 08

3.1 ATMEGA328P 08

3.2 MPU6050 08

3.3 LCD Display 09

3.4 Interfacing and Passive Components 09

3.4.1 Active Buzzer 09

3.4.2 LED 10

3.4.3 Passive Components 10

3.5 Arduino IDE 10

iv

3.6 Autodesk EAGLE 11

Chapter 4

12

4. IMPLEMENTATION 12

4.1 Hardware Design and Implementation 12

4.1.1 Schematic 12

4.1.2 PCB Design 12

4.2 Software algorithm 14

4.2.1 Timer configuration and operation 14

4.2.2 MPU6050 Configuration and Vibration Detection 14

4.2.3 EEPROM Operations 15

4.2.4 Interfacing Other Modules 16

Chapter 5 17

5. RESULTS AND DISCUSSION 17

5.1 Boot Up 17

5.2 Selection 18

5.3 Time Recording 18

5.4 Previous Value 20

CONCLUSIONS AND FUTURE SCOPE 21

REFERENCES viii

APPENDICES

APPENDIX – I ix

v

LIST OF FIGURES

Fig. No. Description of the figure Page No.

1 Demolition Hammer 1

2 Intel 8051 Microcontroller 5

3 MEMS Accelerometer’s internal structure 6

4 Polarization of light 7

5 ATMEGA328P Microcontroller 8

6 MPU6050 Accelerometer cum Gyroscope 8

7 16X2 LCD Display 9

8 Active Buzzer 9

9 LEDs 10

10 Passive Components 10

11 Arduino IDE 10

12 Screenshot of Autodesk EAGLE 11

13 Schematic 12

14 PCB Component Placement Layout 13

15 PCB Top layer and Bottom layer 13

16 Value limits in each axis to detect vibration 15

17 Memory Map of EEPROM in ATMEGA328P 15

 18 Basic Operation Flowchart 16

19 Demolition Hammer Operating Time Recorder 17

20 Title Screen 17

21 Selection Screen 18

22 Device Calibration 18

23 Device Calibration Completed 19

24 Time Recording 19

25 Time Recording Completed 19

26 Previous Value Screen 20

vi

LIST OF TABLES

Table No. Description of the Table Page No.

1 Hardware and Software used 4

2 Register values from MPU6050 Register Map 14

vii

NOMENCLATURE USED

LCD Liquid Crystal Display

DHOTR Demolition Hammer Operating Time Recorder

LED Light Emitting Diode

I2C Inter Integrated Circuit

MEMS Micro Electrical Mechanical System

EEPROM Electrically Erasable Programmable Read Only Memory

ADC Analog to Digital Converter

DAC Digital to Analog Converter

UART Universal Asynchronous Receiver Transmitter

SMD Surface Mount Device

PCB Printed Circuit Board

IDE Integrated Development Environment

RISC Reduced Instruction Set Computer

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 1

Chapter 1

1. Introduction
Demolition hammer is an electro-mechanical device that is used to chip and break out concrete,

bricks and hard surfaces. These devices are used in construction fields to carry out demolition

work. When an individual hires the demolition services, the service is carried out using this

hammer and they will be paying the operators of the hammer in hourly basis, the tool which is use

at present does not have any device fixed to monitor its activity. Also the cost of current demolition

service is around ₹300 per hour. The above case is fine

until the users of the hammer, i.e., the works exploit

the situation and delay the work. This leads to further

delay in following construction work.

Hence we propose our solution for the problem,

“Demolition Hammer Time Recorder” it records the

total time the machine worked with its vibration. If the

demolition hammer is not at work then the timer automatically pauses for that duration and then

when the hammer resumes to work then the timer also resumes from that point of time. The

proposed device will be able to store few previous time recordings. To have a simple cost effective

device, we use a LCD display for user interface. By making use of the proposed device one will

be able to measure the exact time of work and can demand payment for the same. We also believe

that, incorporating such device in such demolition tasks, we can boost efficiency and ethics of the

workers. This will improve the customer satisfaction for those services and accelerate the

construction work.

1.1 Literature Survey

In the survey conducted by our project guide Dr. Mohamad Umair Bagali, we have concluded that,

many construction workers do not efficiently manage time and delay the work. Since, these

services are charged on an hourly basis i.e. ₹300, few workers delay the work unnecessarily and

increase the working hours and demand payment for the time they are idle. Hence, some kind of

monitoring activity is required to get the worker make the most out of their time. Most of the

demolition work is done using this demolition hammer. But instead of a human, a machine can be

Figure 1: Demolition Hammer

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 2

precise about the total working time of the workers. If our tool is attached to the demolition

hammer it will be able to record time it has been used and workers will be paid for the total time

they worked for.

1.2 Limitations of Current Work

The continuous recording time is limited to 18 hours. This limit is due to the size of integer variable

of the Arduino C++ compiler. Having the size of integer as 16 bits or 2 bytes can store a maximum

value of 216 − 1 that is 65,535. By dividing 65,535 by 3600 we get 18.20 hours. Since the device

is battery operated the contrast and brightness of the LCD display decreases with time, is due to

the fact that a potentiometer is used to adjust the contrast and when battery voltage decreases the

voltage drop will decrease too. This voltage drop around the potentiometer is used to adjust the

contrast, hence the contract decreases along with the voltage drop with time.

1.3 Problem Definition

In this fast progressing world, there is a need for efficiency and speed. But when the construction

work’s demolition phase is considered, the workers are often found to be inefficient in their work

causing unnecessary delays and demanding payment for non-working hours. Also, since

construction works depend on demolition services in one or other way it is important to maintain

efficiency and ethics in demolition services so that it does not affect the following work. Hence,

there arises a need to monitor these workers and thereby completing the work on time. Instead of

human supervisor, if an electronic device is used for the same we can achieve accuracy and

eliminate any possible errors in supervision.

1.4 Objectives

Design and develop a cost effective add-on time recording device that is capable of recoding the

operation time of a demolition hammer. The device should be able to store five previous time

recordings and should have an easy to use interface. Also building the device as battery operated,

thus making the device universal and able to work independent of manufactures of demolition

hammer.

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 3

1.5 Methodology

As discussed in the literature review some the hourly based workers do not work efficiently and

some are not paid according to their work. So, our DHOTR device can be an aid for this problem.

The moto of our project is to get the device to record the operating time of the tool, display the

recorded time on the LCD, able to record few previous recordings, could be easily attached to the

tool, battery powered and should be easy to interface. The methodology of the device can branched

into 4 major segments Timer configuration and Time retrieval, MPU6050 accelerometer

configuration and vibration detection, Interfacing of all modules and individual functions required

for the overall device and at last Circuit and PCB design. Time Configuration can further be

segmented into few steps such as Initializing the 16-bit Timer module of the controller, Make

necessary changes for timer’s register to make the counter raise an interrupt after each second, For

each interrupt increment the “secondRegister” when the vibrations are detected,. For time retrieval

Timer and secondRegister is used Consider timer as a free flowing tap, it keeps on counting

minutes and stores the value in secondRegister. That time can be obtained by accessing

secondRegister at required time. The time is accessed every minute thereby updating the count

displayed on the LCD Display, while time is being recorded while the demolition hammer is in

operation. Since, the timer is a separate peripheral, its continuous operation does not load the CPU

core. The 16 bit register (size of integer) helps in storing value 2^16, which is 65536 minutes and

is equivalent to 1092 hours. This is a lot of time for any demolition service. And that is followed

be Accelerometer configuration, here some course of actions are underwent which are Configuring

MPU6050 with the help of referring to register map provided by the manufacturer, Initialize I2C

communication as a master device, Initialize I2C communication as a master device, Configure

register(0x6B) and reset the register for configuring the register to normal power setting, Configure

register(0x1C) to 0x08 to configure the sensor for +/-4g sensitivity range, End the transmission

using Wire endTransmission() method. After initialization of MPU6050 sensor, we can obtain the

acceleration, i.e. vibration on each axis, here Vibration come into picture, MPU6050 is an

accelerometer along with gyroscope, According to the datasheet, the acceleration data will be

stored in a series of six register starting from 0x3B to 0x40.Each axis has 2 8-bit register, a total

of 16-bits for each axis’s acceleration value. We can read the data stored in these registers through

the I2C bus all the registers specified are all present inside in the sensor itself. However these

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 4

registers gives us the raw data obtained directly from the MEMS (Micro Electrical Mechanical

System) sensor after signal conditioning. We need to process that data in order to obtain the “g”

value on the sensor. According to the datasheet for range of +/-4g, the value obtained from sensor

is divided by 8192.0 to get the “g” value. Now we have our acceleration or “g” values in our

controller, to detect the vibrations we define certain limits in X, Y, Z axis which is experimentally

derived. Whenever the acceleration values goes beyond that limits on each axis, a function

checkVibration() returns true. This mechanism is used to determine the vibrations and accordingly

the microcontroller decides whether to count time or to pause the operation. Interfacing of other

Modules excluding the microcontroller unit and the MPU6050 sensor unit are – Status LED

(Indicates the status of recording operation. It will be on if the operating time is recorded, and will

be off otherwise), Buzzer (Buzzer is on when the device is calibrating, off otherwise), LCD (It is

used to display information about all stages of operation), and four push buttons (Used to get user

input). The entire circuit is based on ATMEGA328P microcontroller from Atmel (Acquired by

Microchip).The reason for choosing this microcontroller is, this microcontroller has a huge

community and list of libraries, which make prototyping very fast. This microcontroller has an

inbuilt EEPROM of 1KB, so that we need not interface an external EEPROM. This microcontroller

has a wide range of operating voltage 2.7 V to 5.5 V @ 16MHz.It is easily available in market as

it is a popular microcontroller.

1.6 Hardware and Software Tools used

Table 1: Hardware and Software used

HARDWARE SOFTWARE

ATMEGA328P Microcontroller Arduino IDE

MPU6050 Accelerometer cum Gyroscope Autodesk EAGLE

16*2 LCD Display

Active Buzzer

LEDs

Push Buttons

Passive Components

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 5

Chapter 2

2. Basic Theory

2.1 Microcontrollers

A microcontroller is a compact integrated circuit designed to govern a specific operation in an

embedded system. A typical microcontroller includes a processor, memory and input/output (I/O)

peripherals on a single chip. A microcontroller is embedded inside of a system to control a singular

function in a device. It does this by interpreting data it receives from its I/O peripherals using its

central processor. MCUs feature input and output pins to implement peripheral functions. Such

functions include analog-to-digital converters, liquid crystal display (LCD) controllers, real-time

clock (RTC), universal synchronous/asynchronous receiver transmitter (USART), timers,

universal asynchronous receiver transmitter

(UART) and universal serial bus (USB)

connectivity. Sensors gathering data related to

humidity and temperature, among others, are also

often attached to microcontrollers.

The core elements of a microcontroller are CPU,

Memory, I/O peripherals and other supporting

peripherals include ADC (Analog to Digital

Converter), Timers, DAC (Digital to Analog Converter), etc. There are a lot of microcontrollers

with diverse architecture to satisfy specific needs of users. For they reduce down to two basic

architecture Von Neumann and Harvard. Also considering instruction set as parameter the

microcontrollers can be classified into CISC (Complex Instruction Set Computer) and RISC

(Reduced Instruction Set Computer) computers. Common MCUs include the Intel MCS-51, often

referred to as an 8051 microcontroller, which was first developed in 1985; the AVR

microcontroller developed by Atmel in 1996; the programmable interface controller (PIC) from

Microchip Technology; and various licensed Advanced RISC Machines (ARM) microcontrollers.

These days’ microcontrollers have become essential part of our lives. They are hidden in the

environment and help up throughout our life.

Figure 2: Intel 8051 Microcontroller

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 6

2.2 Micro Electrical Mechanical System

MEMS is the technology for miniaturized devices which are formed by a combination of electronic

as well as mechanical components or elements. Hence, named Micro-electro-mechanical systems.

They are obtained from microfabrication techniques. Generally, the size of a MEMS device may

vary from one micron to few millimeters. These devices can also vary from no moving structure

to complex multiple moving

electromechanical structures controlled

by integrated microelectronic structures.

Although, MEMS are slightly different

from nanotechnology but there exist high

mutual dependencies between these two

technologies.

MEMS accelerometer consists of a micro-

machined structure built on top of a silicon wafer. This structure is suspended by polysilicon

springs. It allows the structure to deflect at the time when the acceleration is applied on the

particular axis. Due to deflection the capacitance between fixed plates and plates attached to the

suspended structure is changed. This change in capacitance is proportional to the acceleration on

that axis. The sensor processes this change in capacitance and converts it into an analog output

voltage. This voltage signal can be processed and acceleration in each axis can be obtained.

2.3 Time Processing

One of the important things is to process the time. Since the project is expected to operate on

seconds, it is really important to process it and calculate hours and minutes from the second’s data.

The reason for using seconds as basic unit of time in our project will be explained in software

algorithm. Hence, for conversion we can make use of the following formulae,

For converting seconds to hours,

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

3600

Figure 3: MEMS Accelerometer's internal structure

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 7

For converting seconds to minutes,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 % 3600

60

For obtaining remaining seconds,

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 % 60

2.4 Liquid Crystal Display

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical

device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid

crystals do not emit light directly, instead

using a backlight or reflector to produce

images in color or monochrome. LCDs are

available to display arbitrary images (as in a

general-purpose computer display) or fixed

images with low information content, which

can be displayed or hidden. For instance:

preset words, digits, and seven-segment

displays, as in a digital clock, are all good examples of devices with these displays. They use the

same basic technology, except that arbitrary images are made from a matrix of small pixels, while

other displays have larger elements. LCDs can either be normally on (positive) or off (negative),

depending on the polarizer arrangement. For example, a character positive LCD with a backlight

will have black lettering on a background that is the color of the backlight, and a character negative

LCD will have a black background with the letters being of the same color as the backlight. Optical

filters are added to white on blue LCDs to give them their characteristic appearance.

Figure 4: Polarization of light

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 8

Chapter 3

3. Tool Description

3.1 ATMEGA328P

The ATmega328 is a single-chip microcontroller created

by Atmel in the megaAVR family (later Microchip

Technology acquired Atmel in 2016). It has a modified

Harvard architecture 8-bit RISC processor core.

Atmega328 microcontroller is used in basic Arduino

boards i.e. Arduino UNO, Arduino Pro Mini and Arduino

Nano. This Atmel 8-bit AVR RISC-based microcontroller

combines 32 KB ISP flash memory with read-while-write

capabilities, 1 KB EEPROM, 2 KB SRAM, 23 general purpose I/O lines, 32 general purpose

working registers, three flexible timer/counters with compare modes, internal and external

interrupts, serial programmable USART, a byte-oriented 2-wire serial interface, SPI serial port, 6-

channel 10-bit A/D converter (8-channels in TQFP and QFN/MLF packages), programmable

watchdog timer with internal oscillator, and five software selectable power saving modes. The

device operates between 1.8-5.5 volts. The device achieves throughput approaching 1 MIPS per

MHz

3.2 MPU6050

The MPU-6050 is the world’s first Motion Tracking devices designed for the low power, low cost,

and high-performance requirements of smartphones, tablets and wearable sensors. The MPU-6050

incorporates InvenSense’s MotionFusion™ and run-

time calibration firmware that enables manufacturers to

eliminate the costly and complex selection,

qualification, and system level integration of discrete

devices in motion-enabled products, guaranteeing that

sensor fusion algorithms and calibration procedures

deliver optimal performance for consumers. The MPU-

Figure 5: ATMEGA328P
Microcontroller

Figure 6: MPU6050 Accelerometer
cum Gyroscope

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 9

6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer on the same silicon die,

together with an onboard Digital Motion Processor (DMP), which processes complex 6-axis

MotionFusion algorithms. The device can access external magnetometers or other sensors through

an auxiliary master I²C bus, allowing the devices to gather a full set of sensor data without

intervention from the system processor. The devices are offered in a 4 mm x 4 mm x 0.9 mm QFN

package. This device is based on MEMS (Micro Electrical Mechanical System) for its operation.

Let’s look at MEMS in the following sub division.

3.3 LCD Display

Liquid crystal display (LCD), electronic display

device that operates by applying a varying electric

voltage to a layer of liquid crystal, thereby inducing

changes in its optical properties. LCDs are commonly

used for portable electronic games, as viewfinders for

digital cameras and camcorders, in video projection

systems, for electronic billboards, as monitors for

computers, and in flat-panel televisions. Liquid

crystals are materials with a structure that is

intermediate between that of liquids and crystalline

solids. As in liquids, the molecules of a liquid crystal can flow past one another. As in solid

crystals, however, they arrange themselves in recognizably ordered patterns. In common with solid

crystals, liquid crystals can exhibit polymorphism; i.e., they can take on different structural

patterns, each with unique properties. LCDs utilize either nematic or smectic liquid crystals.

3.4 Interfacing and Passive Components

3.4.1 Active Buzzer

An active buzzer will generate a tone using an internal oscillator, so all that

is needed is a DC voltage. A passive buzzer requires an AC signal to make a

sound. It is like an electromagnetic speaker, where a changing input signal

produces the sound, rather than producing a tone automatically.

Figure 7: 16X2 LCD Display

Figure 8: Active
Buzzer

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 10

3.4.2 LED

A light-emitting diode (LED) is a semiconductor light source that

emits light when current flows through it. Electrons in the

semiconductor recombine with electron holes, releasing energy in

the form of photons. The color of the light (corresponding to the

energy of the photons) is determined by the energy required for

electrons to cross the band gap of the semiconductor. White light is

obtained by using multiple semiconductors or a layer of light-

emitting phosphor on the semiconductor device.

3.4.3 Passive Components

Passive electronic components are those that don't have the

ability to control electric current by means of another

electrical signal. Examples of passive electronic

components are capacitors, resistors, inductors,

transformers, and some diodes.

3.5 Arduino IDE

The Arduino Integrated Development

Environment - or Arduino Software (IDE) -

contains a text editor for writing code, a

message area, a text console, a toolbar with

buttons for common functions and a series of

menus. It connects to the Arduino and

Genuino hardware to upload programs and

communicate with them. Programs written

using Arduino Software (IDE) are called

sketches. These sketches are written in the

text editor and are saved with the file

extension “.ino”. The editor has features for

cutting/pasting and for searching/replacing text. The message area gives feedback while saving

Figure 9: LEDs

Figure 10: Passive Components

Figure 11: Arduino IDE

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 11

and exporting and also displays errors. The console displays text output by the Arduino Software

(IDE), including complete error messages and other information. The bottom right-hand corner of

the window displays the configured board and serial port. The toolbar buttons allow you to verify

and upload programs, create, open, and save sketches, and open the serial monitor.

3.6 Autodesk EAGLE

Autodesk EAGLE is a scriptable electronic design

automation (EDA) application with schematic

capture, printed circuit board (PCB) layout, auto-

router and computer-aided manufacturing (CAM)

features. EAGLE stands for Easily Applicable

Graphical Layout Editor (German: Einfach

Anzuwendender Grafischer Layout-Editor) and is

developed by CadSoft Computer GmbH. The company was acquired by Autodesk Inc. in 2016.

Figure 12: Screenshot of Autodesk EAGLE

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 12

Chapter 4

4. Implementation

4.1 Hardware Design and Implementation

4.1.1 Schematic

The schematic of the device is as follows,

4.1.2 PCB Design

The PCB (Printed Circuit Board) for the device is a 2 layer board of 63 mm * 51 mm in dimension.

The layout for the PCB has been created with Autodesk EAGLE. The PCB component placement

Figure 13: Schematic

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 13

process involved multiple iterations. Using trial and error method the best possible PCB layout

and component placement was obtained. It is mentioned as follows,

Figure 14: PCB Component Placement Layout

And the PCB is as follows,

Figure 15: PCB Top (Left) and Bottom (Right)

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 14

4.2 Software algorithm

4.2.1 Timer configuration and operation

To initialize the 16-bit Timer module of the controller, we need to make necessary changes timer’s

register to make the counter raise an interrupt after each second. For each interrupt increment the

“secondRegister” when the vibrations are detected. Hence we have an interrupt every second and

only when vibration is detected, the secondRegister is incremented and the overall duration of the

timer increases. Consider timer as a free flowing tap, it keeps on counting seconds and stores the

value in secondsRegister. That time can be obtained by accessing secondRegister at required time.

The time is accessed every second thereby updating the count displayed on the LCD Display, while

time is being recorded while the demolition hammer is in operation. Since, the timer is a separate

peripheral, its continuous operation does not load the CPU core. The 16 bit register (size of integer)

helps in storing value up to 2^16-1, which is 65536 seconds and is equivalent to 18 hours. This is

a lot of time for any demolition service.

4.2.2 MPU6050 Configuration and Vibration Detection

Configuring MPU6050 is done by referring to register map provided by the manufacturer. First,

initialize I2C communication as a master device. Initially the MPU6050’s slave I2C address is

passed as an argument to Wire.beginTransmission() method to initialize I2C communication.

Then, configure register (0x6B) and reset the register for configuring the register to normal power

setting and configure register (0x1C) to 0x08 to configure the sensor for +/-4g sensitivity range.

After the configuration is over end the transmission using Wire.endTransmission() method.

Table 2: Register values from MPU6050 Register Map

After initialization of MPU6050 sensor, we can obtain the acceleration, i.e. vibration on each axis.

Here MPU6050 is an accelerometer along with gyroscope but we don't make use of the gyroscope.

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 15

According to the datasheet, the acceleration data will be stored in a series of six register starting

from 0x3B to 0x40. Each axis has 2 8-bit register, a total of 16-bits for each axis’s acceleration

value. We can read the data stored in these registers through the I2C bus. Note: These registers

mentioned above are inside the sensor itself.

However these registers gives us the raw data

obtained directly from the MEMS (Micro

Electrical Mechanical System) sensor after

signal conditioning. We need to process that

data in order to obtain the “g” value on the

sensor. According to the datasheet for range

of +/-4g, the value obtained from sensor is

divided by 8192.0 to get the “g” value. Now

we have our acceleration or “g” values in our

controller, to detect the vibrations we define certain limits in X, Y, Z axis which is experimentally

derived. Whenever the acceleration values goes beyond that limits on each axis, a function

checkVibration() returns true. This mechanism is used to determine the vibrations and accordingly

the microcontroller decides whether to count time or to pause the operation.

4.2.3 EEPROM Operations

Also there is EEPROM (Electrically Erasable Programmable Read

Only Memory) inside the microcontroller itself. This Non-Volatile

memory is useful in storing the values of last recordings as

mentioned in features list. These values can be accessed by LCD

display of the device. The EEPROM is 1KB wide and stores data as

8-bit chucks. But the size of integer we use is 16-bits hence, the data

is broken into two pieces of 1 byte (8-bits) each. The first half is

stored in even addresses of EEPROM and second half is stored in

odd addresses of EEPROM alternatively. That stored data is

retrieved in the same way. For splitting the data into higher 8 bits and lower 8 bits, it is multiplied

with 0xFF00 and 0x00FF respectively. Then for retrieving the data both multiplied with 0xFFFF

and ORed with each other.

Figure 16: Value limits in each axis to detect
vibration

Figure 17: Memory Map of
EEPROM in

ATMEGA328P

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 16

4.2.4 Interfacing Other Modules

The interfacing of other modules include interfacing of buzzer, status LED, LCD and four push

buttons namely “START”, “STOP”, “NEXT”, and “PREV”. The algorithm involved is

summarized in the following flow chart,

Figure 18: Basic Operation Flowchart

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 17

Chapter 5

5. Results and Discussion
As mentioned earlier DHOTR (Demolition Hammer Operating Time Recorder) device is an add-
on device to a Demolition hammer which records the operation time with the machines vibration.
The device operation is explained below. The final device is,

Figure 19: Demolition Hammer Operating Time Recorder

5.1 Boot Up
The device is turned on using a slide switch. After the device turns on the device displays “DHOTR
Minor Project 6ECE-8” on the LCD screen. Then the user is redirected to the selection screen.

Figure 20: Title Screen

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 18

5.2 Selection
In the selection screen the user can choose between starting a new recording and viewing previous
values. If user chooses to view values of previous time recordings, then user will be redirected to
previous value screen. If the user chooses to start a new recording, then user is redirected to time
recording procedure.

Figure 21: Selection Screen

5.3 Time Recording
When the user chooses to start a new recording, the calibration process starts. In the calibration
process, the timer module is configures, MPU6050 is configured and calibrated, global interrupts
are enabled and the EEPROM shift operation is completed to accommodate the new recording
value into the EEPROM. After the calibration, the device starts recording the duration of operation.
The timer paused accordingly when no vibration occurs i.e., when user is not using the demolition
hammer.

Figure 22: Device Calibration

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 19

Figure 23: Device Calibration completed

Figure 24: Time Recording

Figure 25: Time Recording Completed

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 20

After the work is completed the user can press “STOP” push button and review the total duration
of work. Then when user presses “NEXT”, is redirected to the selection screen.

5.4 Previous Value
If the user chooses to view the values of previous recordings, user is redirected to Previous values
screen. Here the first value labeled “P5” is the value of latest recording. If user presses “NEXT”,
is redirected to “P4” which is second latest value. This continues till the user reaches “P1” which
is fifth latest recording value. If the user wishes to exit to selection screen after viewing a value,
then user can press “STOP”.

Figure 26: Previous Value Screen

Demolition Hammer Operating Time Recorder

Department of Electronics and Communication Engineering, FET, JAIN DEEMED-TO-BE UNIVERSITY 21

Conclusions and Future Scope
To conclude sometimes demolition hammer users are paid more than they are required or the
workers are not paid for their working hour, to satisfy the payer or payee we can use our device
DHOTR which can be connected to the demolition hammer and record the time for how many
hours or minutes can be used. Our device has a limit of 18 hour recording time with few of
upgrades this can improved, for example with few changes in the program we can increase the
time duration, and with the help of SMD components we can decrease the dimension of the device.

Also this project can be presented to industries which manufacture demolition hammers. We can
apply as a consultant and propose this project to be part of their product itself instead of being an
add-on device.

viii

REFERENCES

[1] (2021) “Arduino Reference”. [Online]. Available: https://www.arduino.cc/reference/en/

[2] “MPU-6000 and MPU-6050 Product Specification”, Revision 3.4, InvenSense Inc.,
USA.

[3] “MPU-6000 and MPU-6050 Register Map and Descriptions”, Revision 4.2, InvenSense
Inc., USA.

[4] “AMS1117 Datasheet”, KEXIN.

[5] “Atmega.48A/PA/88A/PA/168A/PA/328/P megaAVR® Data Sheet”, Microchip.

https://www.arduino.cc/reference/en/

ix

APPENDIX - I

SOURCE CODE

/***
 Arduino Code for "DEMOLITION HAMMER OPERATING TIME RECORDER"
 Minor Project - 18EC66
 Team - 6ECE-8
 Project Guide - Dr.Mohmad Umair Bagali
 Team Members - Shatish B [18BTREC065]
 Pramodth P [18BTREC055]
 Rahul S [18BTREC059]
 Pranay Kumar K [18BTREC056]

 Current compiled binary size: 10576 Bytes
***/
// Includes
#include<Wire.h>
#include<EEPROM.h>
#include<LiquidCrystal.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#define MPU 0x68
#define MAX_X 0.1
#define MAX_Y 0.1
#define MAX_Z 0.1

// Object initilization
LiquidCrystal lcd(11, 10, 9, 8, 7, 6);

// Variable definitions
int secondRegister = 0;
float AccX, AccY, AccZ;
float x, y, z;
// Switches
int START = A2;
int STOP = A1;
int PREV = A0;
int NEXT = A3;
// Buzzer
int Buzzer = 5;
// Status LED
int statusLED = 12;

x

int doesVibrate;
int *doesVibratePtr = &doesVibrate;

// Fuction Declarations
void writeToEEPROM(int addr, int value);
int readFromEEPROM(int addr);
void initMPU6050();
void checkVibration();
void initTimer();
void titleScreen();
void mainMenu();
void calibrating();
void previousValue(int addr);
void calibratingDone();
void displayCurrentTime();
void finalTime();
void shiftEEPROM();
String returnHRTime(int secondRegister);

void setup() {
 Serial.begin(115200);
 lcd.begin(16, 2);
 pinMode(START, INPUT_PULLUP);
 pinMode(STOP, INPUT_PULLUP);
 pinMode(PREV, INPUT_PULLUP);
 pinMode(NEXT, INPUT_PULLUP);
 pinMode(Buzzer, OUTPUT);
 pinMode(statusLED , OUTPUT);
 titleScreen();
 delay(3000);
}

void loop() {
 mainMenu();
 while (1) {
 if (digitalRead(START) ^ digitalRead(PREV)) {
 if (digitalRead(START)) {
 calibrating();
 digitalWrite(Buzzer, HIGH);
 initTimer(); // Initilize Timer
 initMPU6050(); // Initilize MPU6050
 shiftEEPROM();
 delay(2000);
 digitalWrite(Buzzer, LOW);

xi

 digitalWrite(statusLED, HIGH);
 calibratingDone();
 delay(1000);
 while (1) {
 checkVibration();
 displayCurrentTime();
 delay(500);
 if (!digitalRead(STOP)) {
 digitalWrite(statusLED, LOW);
 cli();
 finalTime();
 while (digitalRead(NEXT));
 secondRegister = 0;
 break;
 }
 }
 break;
 }
 if (digitalRead(PREV)) {
 int count = 4;
 while (1) {
 if ((count > 4) | (count < 0)) {
 break;
 }
 else {
 previousValue(count);
 while (!(digitalRead(STOP) ^ digitalRead(NEXT)));
 if (!digitalRead(NEXT)) {
 count--;
 delay(2000);
 }
 else if (!digitalRead(STOP)) {
 break;
 }
 }
 }
 break;
 }
 }
 }
}

// Function Definitions
void writeToEEPROM(int addr, int value) {

xii

 byte first = (0XFF00 & value) >> 8;
 EEPROM.update(addr * 2, first);
 byte sec = 0X00FF & value;
 EEPROM.update((addr * 2) + 1, sec);
}

int readFromEEPROM(int addr) {
 return (0XFFFF & (EEPROM.read(addr * 2) << 8)) | (EEPROM.read((addr * 2) + 1));
}

void initTimer() {
 cli(); // Disable global interrupt
 // Configuring Timer
 // Clearing Bits to clear Garbage values in registers
 TCCR1B = 0x00;
 TCCR1A = 0x00;
 // Starting Timer with Prescalar as 1024 (CSxx - for selecting prescalar)
 // WGM12 - used in mode 4 for using CTC mode (Clear Timer Capture mode)
 TCCR1B = (1 << CS12) | (0 << CS11) | (1 << CS10) | (1 << WGM12);
 // Initialize counter
 TCNT1 = 0;
 // Setting up TCNT1 to compare with 62500 on OCR1A value determined using formula
 OCR1A = 15625;
 // Enable interupt for compare
 TIMSK1 = (1 << OCIE1A);
 sei(); // Enable global interupt
}

void initMPU6050() {
 Wire.begin(); // Initialize comunication
 Wire.beginTransmission(MPU); // Start communication with MPU6050 // MPU=0x68
 Wire.write(0x6B); // Talk to the register 6B
 Wire.write(0x00); // Make reset - place a 0 into the 6B register
 Wire.endTransmission(false);
 Wire.write(0x1C); // Talk to the register 1C
 Wire.write(0x08); // Write 0X08 to select +-4g for range
 Wire.endTransmission(true); //end the transmission
 delay(20);
 Wire.beginTransmission(MPU);
 Wire.write(0x3B); // Start with register 0x3B (ACCEL_XOUT_H)
 Wire.endTransmission(false);
 Wire.requestFrom(MPU, 6, true); // Read 6 registers total, each axis value is stored in 2 register
s
 //For a range of +-4g, we need to divide the raw values by 8192, according to the datasheet

xiii

 x = abs((Wire.read() << 8 | Wire.read()) / 8192.0); // X-axis value
 y = abs((Wire.read() << 8 | Wire.read()) / 8192.0); // Y-axis value
 z = abs((Wire.read() << 8 | Wire.read()) / 8192.0); // Z-axis value
}

void checkVibration() {
 Wire.beginTransmission(MPU);
 Wire.write(0x3B); // Start with register 0x3B (ACCEL_XOUT_H)
 Wire.endTransmission(false);
 Wire.requestFrom(MPU, 6, true); // Read 6 registers total, each axis value is stored in 2 register
s
 //For a range of +-4g, we need to divide the raw values by 8192, according to the datasheet
 AccX = (Wire.read() << 8 | Wire.read()) / 8192.0; // X-axis value
 AccY = (Wire.read() << 8 | Wire.read()) / 8192.0; // Y-axis value
 AccZ = (Wire.read() << 8 | Wire.read()) / 8192.0; // Z-axis value
 if (AccX < 0) {
 AccX = abs(AccX);
 }
 if (AccY < 0) {
 AccY = abs(AccY);
 }
 if (AccZ < 0) {
 AccZ = abs(AccZ);
 }
 if (((AccX - x) > MAX_X) | ((AccY - y) > MAX_Y) | ((AccZ - z) > MAX_Z)) {
 x = AccX;
 y = AccY;
 z = AccZ;
 *doesVibratePtr = true;
 }
 else {
 x = AccX;
 y = AccY;
 z = AccZ;
 *doesVibratePtr = false;
 }
}

void titleScreen() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("DHOTR - 6ECE-8");
 lcd.setCursor(0, 1);
 lcd.print("Minor Project");

xiv

}

void mainMenu() {
 lcd.clear();
 lcd.setCursor(3, 0);
 lcd.print("Choose One");
 lcd.setCursor(0, 1);
 lcd.print("START PREV");
}

void calibrating() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Calibrating...");
 lcd.setCursor(0, 1);
 lcd.print("Do not move");
}

void previousValue(int addr) {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("P");
 lcd.setCursor(1, 0);
 lcd.print(addr + 1);
 lcd.setCursor(2, 0);
 lcd.print(" - ");
 lcd.setCursor(5, 0);
 lcd.print(returnHRTime(readFromEEPROM(addr)));
 lcd.setCursor(0, 1);
 lcd.print("STOP NEXT");
}

void calibratingDone() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Done. Time");
 lcd.setCursor(0, 1);
 lcd.print("Rec. Started");
}

void displayCurrentTime() {
 lcd.clear();
 lcd.setCursor(2, 0);
 lcd.print("Time Elapsed");

xv

 lcd.setCursor(4, 1);
 lcd.print(returnHRTime(secondRegister));
}

void finalTime() {
 lcd.clear();
 lcd.setCursor(1, 0);
 lcd.print("Total Duration");
 lcd.setCursor(0, 1);
 lcd.print(returnHRTime(secondRegister));
 lcd.setCursor(12, 1);
 lcd.print("NEXT");
}

void shiftEEPROM() {
 int i;
 for (i = 0; i < 4; i++) {
 writeToEEPROM(i, readFromEEPROM(i + 1));
 }
}

String returnHRTime(int secondRegister) {
 int hh = secondRegister / 3600;
 int mm = (secondRegister % 3600) / 60;
 int ss = secondRegister % 60;
 String temp = "";
 if (hh <= 9) {
 temp.concat("0");
 }
 temp.concat(hh);
 temp.concat(":");
 if (mm <= 9) {
 temp.concat("0");
 }
 temp.concat(mm);
 temp.concat(":");
 if (ss <= 9) {
 temp.concat("0");
 }
 temp.concat(ss);
 return temp;
}

//Declare and Define ISR for CTC Interrupt

xvi

ISR(TIMER1_COMPA_vect) {
 if (doesVibrate) {
 secondRegister++;
 writeToEEPROM(4, secondRegister);
 }
 TCNT1 = 0x00;
}

	Title Sheet
	abstract
	content
	REPORT-Current
	refrence
	apendix

