Live zoom counselling Virtual
Tour

FET Blogs

10 April 2024

Comparing Engineering Mathematics and Engineering Physics

The field of engineering is all about applying science or mathematics to problems or innovations that scientists come up with. It is a part of STEM education that engages students in science, technology, engineering and mathematics. Engineering applications are used everywhere, from prosthetics and cell membranes to construction and transportation.

Engineering physics is a blend of combined disciplines involving mathematics, engineering, chemistry and physics in multiple ways to develop and design innovative solutions. On the other hand, engineering mathematics is a branch of engineering concerned with mathematical methods and techniques that find their uses in various industries. The mutual relationship between these two fields plays a crucial role in developing innovative solutions and problem-solving in engineering.

Course duration

Typically, an engineering degree, i.e. a Bachelor of Engineering (B.E.) is an academic degree that takes four years to complete. While studying for a bachelor’s in engineering, a student is offered various subjects spanning multiple disciplines. There can be specialisations or specific concentrations within the engineering field that can be studied, and mathematics and physics are amongst the common subjects that form a part of a B.E. degree. Since these are foundational courses, they usually begin in the initial semesters. They are spread across multiple semesters, going from beginner to advanced level, as they form the fundamental blocks for the engineering degree.

Curriculum

Engineering physics reduces the gap between practical engineering and theoretical science, focusing on design, analysis, research and development. Topics covered may include main areas of engineering such as:

  1. Mechanics
  2. Nanotechnology
  3. Thermodynamics
  4. Electromagnetism
  5. Quantum mechanics
  6. Ultra-fast lasers
  7. Adaptive optics
  8. Computer simulation of physical systems
  9. Magnetic storage technology

Engineering mathematics is an interdisciplinary subject that answers engineer’s needs for practical and theoretical specialisations and helps solve engineering problems. Topics that engineering mathematics consists of primarily include:

  1. Differential equations
  2. Vector and tensor analysis
  3. Calculus
  4. Linear algebra
  5. Statistics and probability
  6. Approximation theory

Career opportunities

Engineering physics bridges the fundamental laws of physics and their practical implementation in engineering design and technology. It is crucial in developing innovative solutions and advancing technology across various engineering disciplines. If you are interested or passionate about creating and testing systems or mechanical/electrical components of machines, then engineering physics is the path to take. You can find a career in various industries with a degree in engineering physics. Some career options might include:

  1. Engineering technicians take care of regular maintenance or troubleshooting for any technical issues concerning research and development. They also conduct experiments on products, tools or equipment in labs or job sites to test for quality control.
  2. Data analysts analyse data based on facts and calculations and use it to predict trends and develop solutions to innovate processes and help with engineering projects
  3. Test engineers are involved in quality control, i.e. inspection and evaluation of products before end users use them
  4. Engineering consultants design and monitor project progress, evaluate, find and solve technical issues
  5. Mechanical designers create designs for mechanical devices or models of machine parts, tools, and other equipment apart from helping project engineers, which entails a mechanical designer's job duties

Engineering mathematics is a multifaceted discipline that provides the analytical tools engineers need to understand, model, and optimise complex systems. An engineering mathematics degree can equip you with skills opening doors for various industry careers. A few potential career opportunities that you can look forward to are:

  1. Data analysts analyse statistical models and large data sets with the help of engineering mathematics methods and algorithms to help get insightful and actionable solutions
  2. Financial analysts are involved in risk assessment, predictive analysis, forecasting or financial modelling using quantitative techniques to find trends in financial performance
  3. Investment bankers advise clients on mergers or acquisitions, capital markets, investment strategies, etc., with the help of results and forecasts from quantitative analysis in engineering mathematics
  4. Statistical analysts conduct and design experiments and work on developing statistical models to analyse data sets for better decision-making

Both engineering mathematics and physics are unique in their ways, but the choice of moving forward with either of the specialisations depends on your future career goals and objectives. You can take these subjects as standalone or pursue them as a part of the integrated broader specialisation. Mathematics and physics are relevant for various job roles, as stated above. They are proficient in leveraging data-driven decision-making and can be considered good options as you embark on your engineering journey. The future of engineering solutions will undoubtedly be significantly influenced by the joint efforts of mathematicians and physicists within the engineering community as technology continues to progress.